Research Overview

{iin Japanesej

Discovery of Helicity Induction and Memory Effects in Synthetic Macromolecules

@The helicity of biological macromolecules is largely governed by the homochirality of their components. In polymer and supramolecular chemistry, control of helicity is an attractive goal because of possible applications in materials science, chemical sensing and enantioselective catalysis. We discovered that macromolecular helicity can be induced in a polymer by an optically active molecule and this helicity can be further 'memorized' when the chiral molecule is replaced by various achiral ones. Although the maintenance of helicity in the polymer is not perfect, it can 'repair' itself over time. The ghelicity induction and memory effecth has been proved a unique and valuable method to constructing helical polymers. This methodology has a great advantage in practical viewpoint such that a preferred-handed helical polymer can be obtained from commodity polymers such as poly(methyl methacrylate) (PMMA). This work was highlighted in Chem. & Eng. News (ACS), and was a significant milestone in the field of polymer and supramolecular chemistry, thereafter a number of helical molecules and polymers have been prepared based on the ghelicity induction and memoryh concept.

Helical Architectures

Related Important Papers

  1. E. Yashima, T. Matsushima, Y. Okamoto, J. Am. Chem. Soc., 117, 11596-11597 (1995).
  2. E. Yashima, T. Matsushima, Y. Okamoto, J. Am. Chem. Soc., 119, 6345-6359 (1997).
  3. E. Yashima, T. Nimura, T. Matsushima, Y. Okamoto, J. Am. Chem. Soc., 118, 9800-9801 (1996).
  4. E. Yashima, Y. Maeda, Y. Okamoto, J. Am. Chem. Soc., 120, 8895-8896 (1998).
  5. E. Yashima, K. Maeda, Y. Okamoto, Nature, 399, 449-451 (1999).
  6. E. Yashima, K. Maeda, T. Yamanaka, J. Am. Chem. Soc., 122, 7813-7814 (2000).
  7. H. Onouchi, K. Maeda, E. Yashima, J. Am. Chem. Soc., 123, 7441- 7442 (2001).
  8. E. Yashima, K. Maeda, O. Sato, J. Am. Chem. Soc., 123, 8159-8160 (2001).
  9. T. Nishimura, K. Takatani, S.-I. Sakurai, K. Maeda, E. Yashima, Angew. Chem., Int. Ed., 41, 3602-3604 (2002).
  10. M. Ishikawa, K. Maeda, E. Yashima, J. Am. Chem. Soc., 124, 7448-7458 (2002).
  11. R. Nonokawa, E. Yashima, J. Am. Chem. Soc., 125, 1278-1283 (2003).
  12. H. Goto, H. Q. Zhang, E. Yashima, J. Am. Chem. Soc., 125, 2516-2523 (2003).
  13. M. Ishikawa, K. Maeda, Y. Mitsutsuji, E. Yashima, J. Am. Chem. Soc., 126, 732 (2004).
  14. K. Maeda, K. Morino, Y. Okamoto, T. Sato, E. Yashima, J. Am. Chem. Soc., 126, 4329-4342 (2004).
  15. K. Maeda, M. Ishikawa, E. Yashima, J. Am. Chem. Soc., 126, 15161-15166 (2004).
  16. K. Maeda, Y. Takeyama, K. Sakajiri, E. Yashima, J. Am. Chem. Soc., 126, 16284-16285 (2004).
  17. H. Onouchi, T. Miyagawa, A. Furuko, K. Maeda, E. Yashima, J. Am. Chem. Soc., 127, 2960-2965 (2005).
  18. T. Miyagawa, A. Furuko, K. Maeda, K. Katagiri, Y. Furusho, E. Yashima, J. Am. Chem. Soc., 127, 5018-5019 (2005).
  19. K. Maeda, H. Mochizuki, M. Watanabe, E. Yashima, J. Am. Chem. Soc., 128, 7639-7650 (2006).
  20. H. Onouchi, T. Miyagawa, K. Morino, E. Yashima, Angew. Chem., Int. Ed., 45, 2381-2384 (2006).
  21. K. Okoshi, S.-i. Sakurai, S. Ohsawa, J. Kumaki, E. Yashima, Angew. Chem., Int. Ed., 45, 8173-8176 (2006).
  22. T. Miyagawa, M. Yamamoto, R. Muraki, H. Onouchi, E. Yashima, J. Am. Chem. Soc., 129, 3676-3682 (2007).
  23. T. Kawauchi, J. Kumaki, A. Kitaura, K. Okoshi, H. Kusanagi, K. Kobayashi, T. Sugai, H. Shinohara, E. Yashima, Angew. Chem., Int. Ed., 47, 515-519 (2008).
  24. T. Kawauchi, A. Kitaura, J. Kumaki, H. Kusanagi, E. Yashima, J. Am. Chem. Soc., 130, 11889-11891 (2008).
  25. Y. Hase, K. Nagai, H. Iida, K. Maeda, N. Ochi, K. Sawabe, K. Sakajiri, K. Okoshi, E. Yashima, J. Am. Chem. Soc., 131, 10719-10732 (2009).
  26. T. Kawauchi, A. Kitaura, M. Kawauchi, T. Takeichi, J. Kumaki, H. Iida, E. Yashima, J. Am. Chem. Soc., 132, 12191-12193 (2010).

Detailed Information